skip to main content


Search for: All records

Creators/Authors contains: "Watson, Carah"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Over the past year we continued, under support from the NSF Division of Undergraduate Education, to emphasize implementation of Low-Cost Desktop Learning Modules LCDLMs for fluid mechanics, heat transfer and biomedical applications. Here we present implementation data from concept tests and surveys, details on new designs and insights gained. Through these activities our team progressed beyond original expectations that were outlined in our original set of NSF-sponsored objectives. We analyzed data from several institutions added from the south central and mid-eastern portions of the US through a combined University of ***-L** and -P** training hub conducted in a virtual mode held in September 2020 with regional communications spearheaded by respective faculty from these institutions. Much of the data analyzed results from support through a 2020 NSF supplement where we engaged in a study to compare direct hands-on implementations of LCDLMs to virtual synchronous and asynchronous implementations augmented with short conceptual videos, a tact necessary because of COVID-19 in-person restrictions. Surprisingly, both in-person and virtual modes show similar conceptual gains. A publication is being developed with intent for submission to the International Journal of Engineering Education where we compare the virtual and in-person modes of instruction. We added a few more institutions through a northeastern training hub held in August 2021 with faculty from the University of *** managing regional communications; again, this hub was held virtually given uncertainty about the lifting of COVID-19 related restrictions. Regarding new LCDLMs we added a shell and tube heat exchanger and fabricated a large number for distribution and implementation and began analyzing conceptual gains and survey results. We prototyped a new evaporative cooler and continue to develop new broader impact units to demonstrate stenosis in an artery and blood cell separations and began implementing them in the classroom. Regarding LCDLM publications a paper was published in Chemical Engineering Education on a study where we compare heat transfer data for the miniature double pipe heat exchanger to predictions based on correlations for industrial scale heat exchangers and included classroom assessment data. 
    more » « less
  2. Hands-on experiments using the Low-Cost Desktop Learning Modules (LCDLMs) have been implemented in dozens of classrooms to supplement student learning of heat transfer and fluid mechanics concepts with students of varying prior knowledge. The prior knowledge of students who encounter these LCDLMs in the classroom may impact the degree to which students learn from these interactive pedagogies. This paper reports on the differences in student cognitive learning between groups with low and high prior knowledge of the concepts that are tested. Student conceptual test results for venturi, hydraulic loss, and double pipe heat exchanger LCDLMs are analyzed by grouping the student data into two bins based on pre-test score, one for students scoring below 50% and another for those scoring above and comparing the improvement from pretest to posttest between the two groups. The analysis includes data from all implementations of each LCDLM for the 2020-2021 school year. Results from each of the three LCDLMs were analyzed separately to compare student performance on different fluid mechanics or heat exchanger concepts. Then, the overall pre- and posttest scores for all three LCDLMs were analyzed to examine how this interactive pedagogy impacts cognitive gains. Results showed statistically significant differences in improvement between low prior knowledge groups and high prior knowledge groups. Additional findings showed statistically significant results suggesting that the gaps in performance between low prior knowledge and high prior knowledge groups on pre-tests for the LCDLMs were decreased on the posttest. Findings showed that students with lower prior knowledge show a greater overall improvement in cognitive gains than those with higher prior knowledge on all three low-cost desktop learning modules. 
    more » « less
  3. Our team has developed Low-Cost Desktop Learning Modules (LCDLMS) as tools to study transport phenomena aimed at providing hands-on learning experiences. With an implementation design embedded in the community of inquiry framework, we disseminate units to professors across the country and train them on how to facilitate teacher presence in the classroom with the LC-DLMs. Professors are briefed on how create a homogenous learning environment for students based on best-practices using the LC-DLMs. By collecting student cognitive gain data using pre/posttests before and after students encounter the LC-DLMs, we aim to isolate the variable of the professor on the implementation with LC-DLMs. Because of the onset of COVID-19, we have modalities for both hands-on and virtual implementation data. An ANOVA whereby modality was grouped and professor effect was the independent variable had significance on the score difference in pre/posttest scores (p<0.0001) and on posttest score only (p=0.0004). When we divide out modality between hands-on and virtual, an ANOVA with an Ftest using modality as the independent variable and professor effect as the nesting variable also show significance on the score difference between pre and posttests (p-value=0.0236 for handson, and p-value=0.0004 for virtual) and on the posttest score only (p-value=0.0314 for hands-on, and p-value<0.0001 for virtual). These results indicate that in all modalities professor had an effect on student cognitive gains with respect to differences in pre/posttest score and posttest score only. Future will focus on qualitative analysis of features of classrooms yield high cognitive gains in undergraduate engineering students. 
    more » « less